3.413 \(\int \cos ^2(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=62 \[ \frac{a (A+B) \sin (c+d x)}{d}+\frac{1}{2} a x (A+2 (B+C))+\frac{a A \sin (c+d x) \cos (c+d x)}{2 d}+\frac{a C \tanh ^{-1}(\sin (c+d x))}{d} \]

[Out]

(a*(A + 2*(B + C))*x)/2 + (a*C*ArcTanh[Sin[c + d*x]])/d + (a*(A + B)*Sin[c + d*x])/d + (a*A*Cos[c + d*x]*Sin[c
 + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.149771, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 39, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.128, Rules used = {4074, 4047, 8, 4045, 3770} \[ \frac{a (A+B) \sin (c+d x)}{d}+\frac{1}{2} a x (A+2 (B+C))+\frac{a A \sin (c+d x) \cos (c+d x)}{2 d}+\frac{a C \tanh ^{-1}(\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*(A + 2*(B + C))*x)/2 + (a*C*ArcTanh[Sin[c + d*x]])/d + (a*(A + B)*Sin[c + d*x])/d + (a*A*Cos[c + d*x]*Sin[c
 + d*x])/(2*d)

Rule 4074

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac{a A \cos (c+d x) \sin (c+d x)}{2 d}-\frac{1}{2} \int \cos (c+d x) \left (-2 a (A+B)-a (A+2 (B+C)) \sec (c+d x)-2 a C \sec ^2(c+d x)\right ) \, dx\\ &=\frac{a A \cos (c+d x) \sin (c+d x)}{2 d}-\frac{1}{2} \int \cos (c+d x) \left (-2 a (A+B)-2 a C \sec ^2(c+d x)\right ) \, dx+\frac{1}{2} (a (A+2 (B+C))) \int 1 \, dx\\ &=\frac{1}{2} a (A+2 (B+C)) x+\frac{a (A+B) \sin (c+d x)}{d}+\frac{a A \cos (c+d x) \sin (c+d x)}{2 d}+(a C) \int \sec (c+d x) \, dx\\ &=\frac{1}{2} a (A+2 (B+C)) x+\frac{a C \tanh ^{-1}(\sin (c+d x))}{d}+\frac{a (A+B) \sin (c+d x)}{d}+\frac{a A \cos (c+d x) \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.141427, size = 59, normalized size = 0.95 \[ \frac{a \left (4 (A+B) \sin (c+d x)+A \sin (2 (c+d x))+2 A c+2 A d x+4 B d x+4 C \tanh ^{-1}(\sin (c+d x))+4 C d x\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*(2*A*c + 2*A*d*x + 4*B*d*x + 4*C*d*x + 4*C*ArcTanh[Sin[c + d*x]] + 4*(A + B)*Sin[c + d*x] + A*Sin[2*(c + d*
x)]))/(4*d)

________________________________________________________________________________________

Maple [A]  time = 0.09, size = 100, normalized size = 1.6 \begin{align*}{\frac{Aa\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2\,d}}+{\frac{aAx}{2}}+{\frac{Aac}{2\,d}}+{\frac{Ba\sin \left ( dx+c \right ) }{d}}+aCx+{\frac{Cac}{d}}+{\frac{Aa\sin \left ( dx+c \right ) }{d}}+aBx+{\frac{Bac}{d}}+{\frac{aC\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

1/2*a*A*cos(d*x+c)*sin(d*x+c)/d+1/2*a*A*x+1/2/d*A*a*c+a*B*sin(d*x+c)/d+a*C*x+1/d*C*a*c+a*A*sin(d*x+c)/d+a*B*x+
1/d*B*a*c+1/d*a*C*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.939819, size = 120, normalized size = 1.94 \begin{align*} \frac{{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a + 4 \,{\left (d x + c\right )} B a + 4 \,{\left (d x + c\right )} C a + 2 \, C a{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, A a \sin \left (d x + c\right ) + 4 \, B a \sin \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/4*((2*d*x + 2*c + sin(2*d*x + 2*c))*A*a + 4*(d*x + c)*B*a + 4*(d*x + c)*C*a + 2*C*a*(log(sin(d*x + c) + 1) -
 log(sin(d*x + c) - 1)) + 4*A*a*sin(d*x + c) + 4*B*a*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.519659, size = 184, normalized size = 2.97 \begin{align*} \frac{{\left (A + 2 \, B + 2 \, C\right )} a d x + C a \log \left (\sin \left (d x + c\right ) + 1\right ) - C a \log \left (-\sin \left (d x + c\right ) + 1\right ) +{\left (A a \cos \left (d x + c\right ) + 2 \,{\left (A + B\right )} a\right )} \sin \left (d x + c\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/2*((A + 2*B + 2*C)*a*d*x + C*a*log(sin(d*x + c) + 1) - C*a*log(-sin(d*x + c) + 1) + (A*a*cos(d*x + c) + 2*(A
 + B)*a)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.24857, size = 177, normalized size = 2.85 \begin{align*} \frac{2 \, C a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 2 \, C a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) +{\left (A a + 2 \, B a + 2 \, C a\right )}{\left (d x + c\right )} + \frac{2 \,{\left (A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/2*(2*C*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 2*C*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (A*a + 2*B*a + 2*C*
a)*(d*x + c) + 2*(A*a*tan(1/2*d*x + 1/2*c)^3 + 2*B*a*tan(1/2*d*x + 1/2*c)^3 + 3*A*a*tan(1/2*d*x + 1/2*c) + 2*B
*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^2)/d